Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 11(1): 22493, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526101

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has infected millions worldwide, therefore there is an urgent need to increase our diagnostic capacity to identify infected cases. Although RT-qPCR remains the gold standard for SARS-CoV-2 detection, this method requires specialised equipment in a diagnostic laboratory and has a long turn-around time to process the samples. To address this, several groups have recently reported the development of loop-mediated isothermal amplification (LAMP) as a simple, low cost and rapid method for SARS-CoV-2 detection. Herein we present a comparative analysis of three LAMP-based assays that target different regions of the SARS-CoV-2: ORF1ab RdRP, ORF1ab nsp3 and Gene N. We perform a detailed assessment of their sensitivity, kinetics and false positive rates for SARS-CoV-2 diagnostics in LAMP or RT-LAMP reactions, using colorimetric or fluorescent detection. Our results independently validate that all three assays can detect SARS-CoV-2 in 30 min, with robust accuracy at detecting as little as 1000 RNA copies and the results can be visualised simply by color changes. Incorporation of RT-LAMP with fluorescent detection further increases the detection sensitivity to as little as 100 RNA copies. We also note the shortcomings of some LAMP-based assays, including variable results with shorter reaction time or lower load of SARS-CoV-2, and false positive results in some experimental conditions and clinical saliva samples. Overall for RT-LAMP detection, the ORF1ab RdRP and ORF1ab nsp3 assays have faster kinetics for detection but varying degrees of false positives detection, whereas the Gene N assay exhibits no false positives in 30 min reaction time, which highlights the importance of optimal primer design to minimise false-positives in RT-LAMP. This study provides validation of the performance of LAMP-based assays as a rapid, highly sensitive detection method for SARS-CoV-2, which have important implications in development of point-of-care diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2/genetics , Saliva/metabolism , Adult , COVID-19/diagnosis , COVID-19/genetics , COVID-19/metabolism , Female , Humans , Male , Saliva/virology
2.
Sci Rep ; 11(1): 15176, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327219

ABSTRACT

There is currently a high level of demand for rapid COVID-19 tests, that can detect the onset of the disease at point of care settings. We have developed an ultra-portable, self-contained, point-of-care nucleic acid amplification test for diagnosis of active COVID-19 infection, based on the principle of loop mediated isothermal amplification (LAMP). The LAMP assay is 100% sensitive and specific to detect a minimum of 300 RNA copies/reaction of SARS-CoV-2. All of the required sample transportation, lysing and amplification steps are performed in a standalone disposable cartridge, which is controlled by a battery operated, pocket size (6x9x4cm3) unit. The test is easy to operate and does not require skilled personnel. The total time from sample to answer is approximately 35 min; a colorimetric readout indicates positive or negative results. This portable diagnostic platform has significant potential for rapid and effective testing in community settings. This will accelerate clinical decision making, in terms of effective triage and timely therapeutic and infection control interventions.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Point-of-Care Testing , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , Equipment Design , Humans , Molecular Diagnostic Techniques/economics , Nucleic Acid Amplification Techniques/economics , Point-of-Care Testing/economics , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors
3.
BMJ Open ; 11(5): e043488, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1259007

ABSTRACT

INTRODUCTION: Stroke is a common cause of epilepsy that may be mediated via glutamate dysregulation. There is currently no evidence to support the use of antiseizure medications as primary prevention against poststroke epilepsy. Perampanel has a unique antiglutamatergic mechanism of action and may have antiepileptogenic properties. This study aims to evaluate the efficacy and safety of perampanel as an antiepileptogenic treatment in patients at high risk of poststroke epilepsy. METHODS AND ANALYSIS: Up to 328 patients with cortical ischaemic stroke or lobar haemorrhage will be enrolled, and receive their first treatment within 7 days of stroke onset. Patients will be randomised (1:1) to receive perampanel (titrated to 6 mg daily over 4 weeks) or matching placebo, stratified by stroke subtype (ischaemic or haemorrhagic). Treatment will be continued for 12 weeks after titration. 7T MRI will be performed at baseline for quantification of cerebral glutamate by magnetic resonance spectroscopy and glutamate chemical exchange saturation transfer imaging. Blood will be collected for measurement of plasma glutamate levels. Participants will be followed up for 52 weeks after randomisation.The primary study outcome will be the proportion of participants in each group free of late (more than 7 days after stroke onset) poststroke seizures by the end of the 12-month study period, analysed by Fisher's exact test. Secondary outcomes will include time to first seizure, time to treatment withdrawal and 3-month modified Rankin Scale score. Quality of life, cognitive function, mood and adverse events will be assessed by standardised questionnaires. Exploratory outcomes will include correlation between cerebral and plasma glutamate concentration and stroke and seizure outcomes. ETHICS AND DISSEMINATION: This study was approved by the Alfred Health Human Research Ethics Committee (HREC No 44366, Reference 287/18). TRIAL REGISTRATION NUMBER: ACTRN12618001984280; Pre-results.


Subject(s)
Brain Ischemia , COVID-19 , Stroke , Clinical Trials, Phase II as Topic , Double-Blind Method , Humans , Nitriles , Pyridones , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Stroke/complications , Stroke/drug therapy , Treatment Outcome
4.
Ann Clin Microbiol Antimicrob ; 20(1): 38, 2021 May 22.
Article in English | MEDLINE | ID: covidwho-1238721

ABSTRACT

BACKGROUND: SARS-CoV-2 is a newly emerged coronavirus, causing the coronavirus disease 2019 (COVID-19) outbreak in December, 2019. As drugs and vaccines of COVID-19 remain in development, accurate virus detection plays a crucial role in the current public health crisis. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) kits have been reliably used for detection of SARS-CoV-2 RNA since the beginning of the COVID-19 outbreak, whereas isothermal nucleic acid amplification-based point-of-care automated kits have also been considered as a simpler and rapid alternative. However, as these kits have only been developed and applied clinically within a short timeframe, their clinical performance has not been adequately evaluated to date. We describe a comparative study between a newly developed cross-priming isothermal amplification (CPA) kit (Kit A) and five RT-qPCR kits (Kits B-F) to evaluate their sensitivity, specificity, predictive values and accuracy. METHODS: Fifty-two clinical samples were used including throat swabs (n = 30), nasal swabs (n = 7), nasopharyngeal swabs (n = 7) and sputum specimens (n = 8), comprising confirmed (n = 26) and negative cases (n = 26). SARS-CoV-2 detection was simultaneously performed on each sample using six nucleic acid amplification kits. The sensitivity, specificity, positive/negative predictive values (PPV/NPV) and the accuracy for each kit were assessed using clinical manifestation and molecular diagnoses as the reference standard. Reproducibility for RT-qPCR kits was evaluated in triplicate by three different operators using a SARS-CoV-2 RNA-positive sample. On the basis of the six kits' evaluation results, CPA kit (Kit A) and two RT-qPCR Kits (Kit B and F) were applied to the SARS-CoV-2 detection in close-contacts of COVID-19 patients. RESULTS: For Kit A, the sensitivity, specificity, PPV/NPV and accuracy were 100%. Among the five RT-qPCR kits, Kits B, C and F had good agreement with the clinical diagnostic reports (Kappa ≥ 0.75); Kits D and E were less congruent (0.4 ≤ Kappa < 0.75). Differences between all kits were statistically significant (P < 0.001). The reproducibility of RT-qPCR kits was determined using a coefficients of variation (CV) between 0.95% and 2.57%, indicating good reproducibility. CONCLUSIONS: This is the first comparative study to evaluate CPA and RT-qPCR kits' specificity and sensitivity for SARS-CoV-2 detection, and could serve as a reference for clinical laboratories, thus informing testing protocols amid the rapidly progressing COVID-19 pandemic.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Humans , Reproducibility of Results , Sensitivity and Specificity
5.
Epilepsy Behav ; 115: 107497, 2021 02.
Article in English | MEDLINE | ID: covidwho-977227

ABSTRACT

This is a territory-wide study to investigate the impact of coronavirus disease 2019 (COVID-19) pandemic on Accident and Emergency Department (A&E) attendances and acute ward admissions for seizures. Adult patients who presented to the A&E with seizures from January 23, 2020 to March 24, 2020 (study period) were included and compared with parallel intervals from 2015 to 2019 (control periods). Preexisting time trend in control periods and potential changes during COVID-19 were analyzed by Poisson, negative and logistic regression models. Accident and Emergency Department attendances and ward admissions for seizures decreased significantly during the COVID-19 pandemic. A total of 319 and 230 recorded ward admissions and A&E attendances for seizures were identified during the study period in 2020, compared with 494 and 343 per annum, respectively in the control periods. The ratio of acute ward admission per A&E attendance for seizures did not change significantly. Intensive care utility and mortality rates remained stable. For some patients, delaying medical attention due to fear of nosocomial COVID-19 cross-infection may lead to severe or even life-threatening consequences. This change in medical help-seeking behavior calls for new medical care models to meet the service gap. Education to patients with epilepsy and their caregivers is of utmost importance during this pandemic.


Subject(s)
COVID-19/epidemiology , Emergency Service, Hospital/trends , Patient Acceptance of Health Care , Patient Admission/trends , Seizures/epidemiology , Seizures/therapy , Adult , COVID-19/prevention & control , Female , Hong Kong/epidemiology , Hospitalization/trends , Humans , Male , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL